Influence of Surfactant and Lipid Type on the Physicochemical Properties and Biocompatibility of Solid Lipid Nanoparticles

نویسندگان

  • Carine Dal Pizzol
  • Fabíola Branco Filippin-Monteiro
  • Jelver Alexander Sierra Restrepo
  • Frederico Pittella
  • Adny Henrique Silva
  • Paula Alves de Souza
  • Angela Machado de Campos
  • Tânia Beatriz Creczynski-Pasa
چکیده

Nine types of solid lipid nanoparticle (SLN) formulations were produced using tripalmitin (TPM), glyceryl monostearate (GM) or stearic acid (SA), stabilized with lecithin S75 and polysorbate 80. Formulations were prepared presenting PI values within 0.25 to 0.30, and the physicochemical properties, stability upon storage and biocompatibility were evaluated. The average particle size ranged from 116 to 306 nm, with a negative surface charge around -11 mV. SLN presented good stability up to 60 days. The SLN manufactured using SA could not be measured by DLS due to the reflective feature of this formulation. However, TEM images revealed that SA nanoparticles presented square/rod shapes with an approximate size of 100 nm. Regarding biocompatibility aspects, SA nanoparticles showed toxicity in fibroblasts, causing cell death, and produced high hemolytic rates, indicating toxicity to red blood cells. This finding might be related to lipid type, as well as, the shape of the nanoparticles. No morphological alterations and hemolytic effects were observed in cells incubated with SLN containing TPM and GM. The SLN containing TPM and GM showed long-term stability, suggesting good shelf-life. The results indicate high toxicity of SLN prepared with SA, and strongly suggest that the components of the formulation should be analyzed in combination rather than separately to avoid misinterpretation of the results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solid Lipid Nanoparticles of Atovaquone Based on 24 Full-factorial Design

Solid lipid nanoparticles of atovaquone (ATQ-SLN) were prepared by high shearhomogenization method using tripalmitin, trilaurin, and Compritol 888 ATO as the lipidmatrices and Phospholipon 90H, Tween 80, and poloxamer 188 as the surfactants. Optimizationof the formulations was conducted using 6 sets of 24 full-factorial design based on fourindependent variables that were the number of homogeniz...

متن کامل

Solid Lipid Nanoparticles of Atovaquone Based on 24 Full-factorial Design

Solid lipid nanoparticles of atovaquone (ATQ-SLN) were prepared by high shearhomogenization method using tripalmitin, trilaurin, and Compritol 888 ATO as the lipidmatrices and Phospholipon 90H, Tween 80, and poloxamer 188 as the surfactants. Optimizationof the formulations was conducted using 6 sets of 24 full-factorial design based on fourindependent variables that were the number of homogeniz...

متن کامل

Preparation and Characterization of Three Tilmicosin-loaded Lipid Nanoparticles: Physicochemical Properties and in-vitro Antibacterial Activities

Tilmicosin (TLM) is an important antibiotic in veterinary medicine with low bioavailability and safety. This study aimed to formulate and evaluate physicochemical properties, storage stability after lyophilization and antibacterial activity of three TLM-loaded lipid nanoparticles (TLM-LNPs) including solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs) and lipid-core nanocapsu...

متن کامل

Preparation and Characterization of Three Tilmicosin-loaded Lipid Nanoparticles: Physicochemical Properties and in-vitro Antibacterial Activities

Tilmicosin (TLM) is an important antibiotic in veterinary medicine with low bioavailability and safety. This study aimed to formulate and evaluate physicochemical properties, storage stability after lyophilization and antibacterial activity of three TLM-loaded lipid nanoparticles (TLM-LNPs) including solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs) and lipid-core nanocapsu...

متن کامل

Novel Solid Lipid Nanoparticles for Oral Delivery of Oxyresveratrol: Effect of the Formulation Parameters on the Physicochemical Properties and in vitro Release

Novel solid lipid nanoparticles (SLNs) were developed to improve oral bioavailability of oxyresveratrol (OXY). The SLNs were prepared by a high speed homogenization technique, at an effective speed and time, using Compritol 888 ATO (5% w/w) as the solid lipid. The appropriate weight proportions (0.3% w/w) of OXY affected the physicochemical properties of blank SLNs. The effects of surfactant ty...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2014